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SUMMARY

The bounce-back boundary condition for lattice Boltzmann simulations is evaluated for ¯ow about an in®nite
periodic array of cylinders. The solution is compared with results from a more accurate boundary condition
formulation for the lattice Boltemann method and with ®nite difference solutions. The bounce-back boundary
condition is used to simulate boundaries of cylinders with both circular and octagonal cross-sections. The
convergences of the velocity and total drag associated with this method are slightly sublinear with grid spacing.
Error is also a function of relaxation time, increasing exponentially for large relaxation times. However, the
accuracy does not exhibit a trend with Reynolds number between 0�1 and 100. The square lattice Boltzmann grid
conforms to the octagonal cylinder but only approximates the circular cylinder, and the resulting error associated
with the octagonal cylinder is half the error of the circular cylinder. The bounce-back boundary condition is
shown to yield accurate lattice Boltzmann simulations with reduced computational requirements for
computational grids of 1706170 or ®ner, a relaxation time less than 1�5 and any Reynolds number from 0�1
to 100. For this range of parameters the root mean square error in velocity and the relative error in drag
coef®cient are less than 1 per cent for the octagonal cylinder and 2 per cent for the circular cylinder. # 1997 by
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The increased use of the lattice Boltzmann method (LBM)1± 5 for the computation of ¯uid ¯ow has

generated the need for more rigorous documentation of the errors associated with the LBM. An

important and signi®cant source of error stems from the conditions and constraints imposed upon the

boundary of an obstacle in the ¯ow. The most commonly used LBM boundary condition is known as

the bounce-back method,6±9 which is the topic of this study. Although this method does not provide

high-accuracy boundary conditions for the ¯uid particle distribution, it does provide reasonably

accurate ¯ow solutions for a range of discretization parameters. Recently a number of more accurate
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but more computationally intensive lattice Boltzmann boundary conditions have been proposed.10±12

The consistent hydrodynamic boundary condition proposed by Noble et al.13±15 produces less error

and demonstrates a formally second-order rate of error convergence with grid resolution; for these

reasons it is used as an accurate solution in this study. However, this boundary condition demands

more computational resources and cannot be easily extended to arbitrary surface geometries. As a

result, the bounce-back boundary condition may be a preferable method for modelling no-slip

boundaries if the error associated with that particular ¯ow is acceptable.

In this study the ¯ow through a two-dimensional periodic array of in®nite parallel cylinders is

considered. The two types of cylinders investigated in this study are octagonal and circular in cross-

section. This work documents the accuracy associated with the bounce-back boundary condition

through the calculation of errors in local velocity, local viscous drag and total drag. Accuracy is

computed as a function of grid resolution, relaxation time and Reynolds number.

2. THEORY

2.1. Lattice Boltzmann method

The lattice Boltzmann method is a kinetic-theory-based technique for modelling ¯uid ¯ow and is

formulated in terms of the probability of the existence of a ¯uid particle in the vicinity of a given

location and time that is moving in one of a number of discrete directions. In this study a two-

dimensional square grid lattice is utilized, so that each node is linked to eight neighbours, those

immediately horizontal, vertical and diagonal. The discrete directions are described by the eight

velocity vectors

ei �
Dx

Dt
cos

2p�iÿ 1�
8

� �
; sin

2p�iÿ 1�
8

� �� �
; i � 1; 2; . . . ; 8; �1�

where Dx is the grid spacing and Dt is the time step. The particle distribution fi is a function of

location and time, denoted x and t, as well as the discrete velocities described by the vectors ei. A rest

particle distribution f0 is also included. The particle distribution is described by the discrete velocity

Boltzmann equation as

@fi
@t
� ei ? Hfi � Oi� f �x; t�� � Fi; �2�

where Oi is the collision operator and Fi is a term used to impose a uniform external body force.12 For

the ¯ows discussed in this study, the body force is applied in the x-direction, which is de®ned as the

streamwise direction. The particle collisions are described by the linearized, single-time relaxation

model of Bhatnagar et al.16 applied to the LBM model:4

Oi� f � � ÿ 1

t
� fi ÿ f

eq
i �; �3�

where t is the relaxation time which characterizes the rate at which the system relaxes towards the

equilibrium distribution f
eq

i .

Using a Lagrangian discretization of (2) and substituting the collision model and body force

provides the ®nal form of the lattice Boltzmann evolution equation:

fi�x� eiDt; t � Dt� � fi�x; t� � 1

t�
� f eq

i �x; t� ÿ fi�x; t�� � F 0i ; �4�
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where t*� t=Dt is the dimensionless relaxation time and the body force term12 F 0i � Fi=Dt is given

by

F 01 � F 02 � F 08 �
jFj
6

�Dt�2
Dx

; F 04 � F 05 � F 06 � ÿ
jFj
6

�Dt�2
Dx

; F 00 � F 03 � F 07 � 0: �5�

The macroscopic properties of the ¯ow, including density r, velocity u and internal energy e, are

obtained by taking the moments of the particle distribution:P
i

fi � r; �6�P
i

fiei � ru; �7�
1
2

P
i

fi�uÿ ei� ? �uÿ ei� � re �8�

The incompressible Navier±Stokes ¯uid equations are recovered when the Boltzmann transport

equation is truncated to its long-wavelength, low-frequency, low-Mach-number limit.3 The

equilibrium distribution used here is

f
eq

0 � r
2

7
ÿ 2

3c2
�u ? u�

� �
; �9�
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where c�Dx=Dt. The ¯uid properties of viscosity n and speed of sound cs are given by

n � 2t*ÿ 1

6

�Dx�2
Dt

; �12�

cs �
3

7

� �
Dx

Dt

r
�13�

2.2. Boundary conditions

The implementation of the no-slip boundary condition studied in this paper is referred to as the

`bounce-back' method. To generate the solid boundary of an obstacle, links between neighbouring

nodes are selected to best con®rm to the shape of the obstacle. The nodes just outside the boundary no

longer communicate with their neighbours inside the obstacle. Instead, a particle striking this

boundary bounces back in the direction from which it arrived. Figure 1 shows one quadrant of the

coarsest computational grid used for the octagonal and circular cylinders. The nodes at which the

boundary condition is applied are shown. The bounce-back boundary condition is known to model, to

®rst order, a boundary which lies halfway between these boundary nodes and the neighbouring ¯uid

nodes.7 Based on this interpretation, the approximate shapes of the obstacles being modelled are also

indicated. The computational domain is devised such that the width of the cylinders is equal to the

distance between the cylinders. It is apparent that the boundary condition cannot directly model a

general curvilinear surface but instead uses a stair-step approximation of the surface. It is expected,

however, that the accuracy is improved when modelling a surface which follows the grid lines,

including the diagonal grid lines included in the two-dimensional square grid.
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The bounce-back boundary condition is implemented in the lattice Boltzmann scheme after the

particle distribution is updated according to (4). The application of (4) near the boundary causes some

of the components of the distribution just inside the boundary to be non-zero. After the particle

distribution is computed, the boundary condition reverses the direction of each component of the

particle distribution just inside the boundary. These components then leave the boundary during the

following time step. For example, a particle travelling in the direction e1 is bounded back in the

opposite direction e5, so that the particle distributions f1 and f5 are interchanged. The LBM directional

pairs f2 and f6, f3 and f7, and f4 and f8 are similarly reversed during the implementation of the bounce-

back boundary condition.

The bounce-back boundary condition was originally developed to complement the lattice gas

method for modelling viscous ¯ow. In the lattice gas model the particle distribution function is a

Boolean expression instead of a ¯oating point probability distribution, representing only the presence

or absence of a particle. As the lattice Boltzmann method evolved from the lattice gas model, the

bounce-back boundary condition remained the default representation of an obstacle and is commonly

used today in lattice Boltzmann computations. However, it is known7±9 that the bounce-back

boundary condition does not accurately describe the particle distribution in the ¯uid near a solid wall

and is a heuristic method whose appeal lies in its simplicity and computational ef®ciency.

A more fundamentally based lattice Boltzmann boundary condition 13±15 provides constraints for

the components of the particle distribution which are unknown at the wall. A full set of constraints is

developed for the two-dimensional square grid in terms of the velocity boundary conditions to be

imposed by assuming constant internal energy. This consistent hydrodynamic boundary condition

(HBC) exhibits second-order convergence with grid size.13,14 Lattice Boltzmann computations

utilizing this boundary condition are used as a standard for comparison for the octagonal cylinders in

this study. The consistent hydrodynamic boundary condition is more computationally demanding

than the bounce-back method, but this is offset by its increased accuracy. In ¯ow around an octagonal

cylinder the calculations associated with the HBC consume approximately 25 per cent of the total

processing time. By comparison the bounce-back boundary condition consumes less than 1 per cent

of the computer time.

Figure 1. Implementation of bounce-back boundary condition for octagonal and circular cylinders. The approximate shape of
the obstacle being modelled is shown based on the interpretation that the bounce-back boundary condition provides a surface
lying halfway between the nodes where the boundary condition is applied and neighbouring ¯uid nodes. Note that the diagonal

grid lines are not shown but also exist for the two-dimensional square grid
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3. RESULTS AND DISCUSSION

The problem under consideration is the ¯ow of ¯uid about a periodic array of cylinders which are

octagonal and circular in cross-section. The ¯ow ®eld is computed by simulating the ¯ow about a

single cylinder while imposing periodicity at each of the domain boundaries. Lattice Boltzmann

solutions for a range of grid size, Reynolds number and relaxation time are compared at each node in

the ®eld with the most accurate solutions obtained with improved schemes and the differences in

velocity are computed. The maximum error in velocity is identi®ed for each simulation and the global

error is represented with the root mean square norm of the velocity error. The HBC lattice Boltzmann

computations were used in this study as the accurate solutions for the octagonal cylinders. Based on

the documented accuracy of the method for ¯ow about a periodic array of cylinders15 and the rate of

convergence of the method, a 102061020 simulation using the HBC is expected to be accurate to

within 0�05 per cent. However, the HBC cannot readily be adapted to arbitrary boundary geometries,

because there are insuf®cient constraints for prescribing the components of the particle distribution

which originate from outside the ¯uid domain. Therefore the bounce-back lattice Boltzmann

solutions for the circular cylinders are compared with results from an alternating direction implicit

®nite difference scheme.17 This ®nite difference scheme utilizes boundary-®tted co-ordinates and

second-order-accurate ®nite difference approximations. The numerical grid surrounding the cylinder

is subdivided into four computational domains each of resolution 41641 or 81681. These grids are

denoted as 4164164 and 8168164 and should not be confused with a three-dimensional grid.

Based on the ®nite difference simulations with the 4164164 and 8168164 computational grids, a

conservative estimate of the accuracy of the 4164164 ®nite difference simulations is 0�1 per cent.

In order to quantify the accuracy, the root mean square norm of the error in velocity and the

magnitude of the maximum error in velocity are calculated. These velocity errors and their associated

rates of convergence are calculated using an accurate solution, which is generated via a ®nely gridded

lattice Boltzmann simulation using the hydrodynamic boundary condition for the octagonal cylinder

and a ®nely gridded ®nite difference simulation for the circular cylinder. These velocity errors are

de®ned as

error norm �
P��Dux�2 � �Duy�2�P��ux*�2 � �uy*�2�

 !s
; �14�

error max: � maximum f �p �Dux�2 � �Duy�2�g; �15�
where Dux � ux ÿ ux*, Duy � uy ÿ uy* and ux* and uy* are the components of the local velocity vector

normalized by the average streamwise velocity for the accurate solution. When the convergence with

grid size is being examined, the sums in (14) are performed over the data points which are common to

all grids. This is done in order to isolate the convergence of the solution at these ®xed points in space.

When examining the effects of Reynolds number or relaxation time, the sums are performed over all

points in the simulation. The error in drag coef®cient is de®ned as

error in Cd �
DCd

Cd*

���� ����; �16�

where DCd � Cd ÿ Cd* and Cd* is the drag coef®cient obtained with the accurate simulation.

3.1. Octagonal cylinders

The two boundary conditions, i.e. the bounce-back boundary condition and the consistent

hydrodynamic boundary condition, are applied at the boundaries of a periodic array of octagonal

cylinders for a constant Reynolds number of 10 based on the average streamwise velocity and the

BOUNCE-BACK BOUNDARY CONDITION 253

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 249±263 (1997)



width of the octagon. The associated accuracy and rates of convergence are shown in Figure 2. Here

the grid spacing Dx is normalized by the domain size or, equivalently, the distance between the centre

of the cylinders. The comparison with the accurate solution includes errors due to the discontinuities

in slope of the octagon, contributing to the slightly sublinear convergence of the bounce-back

method. The rates of convergence are 0�63 and 0�94 for the velocity error norm and maximum

velocity error respectively. Formally, the bounce-back boundary condition is expected to be ®rst-

order in the vicinity of the boundary; however, it is shown here to in¯uence the entire ®eld, degrading

the accuracy of the second-order lattice Boltzmann scheme in the entire ®eld.

The distribution of local relative error in velocity is shown in Figure 3, where

local error � ��Dux�2 � �Duy�2�
q

: �17�

Here the 1706170 solution using the bounce-back boundary condition is evaluated from the

102061020 simulation using the consistent hydrodynamic boundary condition. The maximum errors

in local velocity occur at the discontinuities on the boundary of the octagonal cylinder. Although the

error reaches 10 per cent, it is highly localized at the corners of the octagon, so that typical values of

the local error in the ¯ow ®eld are less than 1 per cent.

The same measures of error used to assess ¯ow simulations with the bounce-back boundary

condition are also used to quantify errors associated with the hydrodynamic boundary condition of

Noble et al.13±15 Figure 2 shows the errors associated with the hydrodynamic boundary condition as a

function of grid size. Here the solutions are compared with a 108861088 simulation using the

hydrodynamic boundary condition. For two values of relaxation time, t*� 0�75 and 1�0, the rates of

Figure 2. Errors associated with ¯ow around a periodic array of octagonal cylinders for varying grid resolution Dx, Re� 10 and
t*� 0�75. Errors are calculated for the ¯ow around the octagonal cylinders utilizing both the bounce-back boundary condition
(BB) and the consistent hydrodynamic boundary condition (HBC).13±15 Numbers shown denote the slopes, showing the rate of

convergence
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convergence are 1�7 and 1�9, respectively, for the velocity error norm and 0�69 and 0�72, respectively,

for the maximum velocity error. It is noted that the convergence rate of the hydrodynamic boundary

condition simulations is approximately twice that of the bounce-back simulations for the velocity

error norm which gives a measure of the overall accuracy. Also, the overall velocity ®eld converges

nearly quadratically despite the fact that the maximum error is converging slowly.

The convergence of the drag force is also quanti®ed. Figure 4 shows the relationship between grid

size and relative error in the coef®cient of drag. Like the errors in relative velocity, the convergence

of the bounce-back simulations is sublinear, while the convergence rate of the hydrodynamic

boundary condition simulations is twice that of the bounce-back simulations.

The higher rates of convergence for the hydrodynamic boundary condition occur at the relaxation

time t*� 1�0. Field errors, including the velocity error norm and the error in drag coef®cient, are

decoupled from the speci®cs of the HBC at t*� 1�0, because the updated particle distribution at time

t�Dt is only determined from the equilibrium con®guration and not from the speci®cs of the

previous distribution. This is evident from (4) with t*� 1�0:

fi�x� eiDt; t � Dt� � f
eq

i �x; t� � F 0i : �18�

Figure 3. Distribution of local error in dimensionless velocity for Re� 10, t*� 0�75 and 1706170 computational grid. The
bounce-back method is applied at the boundary of the octagonal cylinder. These velocities are compared with a ®nely gridded
102061020 lattice Boltzmann computation with the hydrodynamic boundary condition. The dark contours denote 1 per cent

increments of relative velocity error
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For relaxation times different from unity, compressibility effects become important in the

speci®cation of boundary conditions as the velocity divergence becomes signi®cant. It can be

shown that for steady state LBM simulations14 the internal energy is given by

e � cs ÿ tc2
s �H ? u�Dx� O�Dx2�: �19�

Because the consistent hydrodynamic boundary condition implemented on the two-dimensional

square grid assumes constant internal energy,14 the second term is neglected and additional error is

introduced. As the Mach number increases, the magnitude of the divergence of velocity grows.

Consequently, errors at the boundary are introduced and the apparent convergence rate decreases.

This explains the lower rate of convergence for t*� 0�75.

The simulation accuracy as a function of Reynolds number through a periodic array of octagons is

illustrated in Figure 5. The results for a 1706170 grid with the bounce-back condition applied at the

boundary are compared with those for a 6806680 grid with the hydrodynamic boundary condition.

The same measures of error in velocity and drag previously utilized in the evaluation of the

convergence are plotted against the Reynolds number in the range from 0�1 to 100. In contrast with

the ¯ow about a single cylinder, the ¯ow about a periodic array of cylinders is steady over this entire

range of Reynolds numbers. These data display no consistent trend with Reynolds number from the

Stokes regime to a Reynolds number of 100. Throughout the whole range of Reynolds numbers the

errors are of the same order of magnitude but vary by a factor of up to ®ve.

The accuracy of LBM simulations is also explicitly dependent on the relaxation time. As the

relaxation time increases, the system is allowed to deviate more signi®cantly from equilibrium and a

viscosity-dependent systematic error is introduced in the ¯ow ®eld. Since the viscosity is a linear

function of relaxation time as in (12). Figure 6 represents the relationship between error and both

relaxation time and viscosity. The error associated with the bounce-back boundary condition on a

1706170 grid is compared with a 102061020 solution using the hydrodynamic boundary condition.

Figure 4. Relative errors in drag coef®cient and convergence rates of error for lattice Boltzmann scheme for Re� 10 and
t*� 0�75. The bounce-back boundary condition (BB) and the hydrodynamic boundary condition (HBC) are applied at the

boundary of the octagonal cylinder. Numbers shown denote the slopes, showing the rate of convergence
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As shown in Figure 6, the maximum velocity error increases from 10 per cent to 30 per cent as the

relaxation time increases from 0�625 to 3�5. However, this maximum velocity occurs at the

discontinuities on the corners of the octagon and does not represent the bulk behaviour of the ¯ow. Of

more importance is the increase in velocity error norm and drag coef®cient error with relaxation time.

The magnitudes of these global errors increase nearly exponentially for relaxation times greater than

unity, reaching a 2 per cent velocity error norm for a relaxation time of 3�5.

3.2. Circular cylinders

The lattice Boltzmann scheme is also applied to ¯ow about a periodic array of circular cylinders.

Because the square grid cannot perfectly simulate a curved surface, greater errors in velocity and drag

are observed than in ¯ow around the octagonal cylinder. The bounce-back method produces a stair-

step boundary which is different from the continuous smooth surface of the ®nite difference scheme.

The nature of the stair-step computational surface is shown in Figure 1. The standard accurate

solution for comparison in this portion of the study is obtained with a ®nite difference simulation,17

which is interpolated onto the square lattice Boltzmann grid using Shepard's method,18,19 a smooth

second-order interpolation scheme. The ®nite difference solution was chosen as the standard solution

because the consistent hydrodynamic boundary condition, the standard in the octagonal cylinder

simulations, is not readily adapted to curvilinear surfaces.

Lattice Boltzmann solutions using the bounce-back boundary condition for a range of grid spacing,

Reynolds number and relaxation time are compared with the standard ®nite difference solution at

each node and the differences in velocity are evaluated. The maximum error in velocity is identi®ed

for each simulation. Global error is represented by the norm of the velocity error and the error in the

coef®cient of drag. These errors are shown in Figure 7 as a function of the grid spacing. The

Figure 5. Relative error as a function of Reynolds number associated with two-dimensional ¯ow around a periodic array of
octagonal cylinders with bounce-back condition applied on boundary. This 1706170 grid bounce-back solution is compared
with the accurate solution utilizing the consistent hydrodynamic boundary condition.13±15 The relaxation time associated with

both grids is 0�75
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Figure 6. Comparison of relative errors in ¯ow about octagonal cylinders as a function of relaxation time with Re� 10 and
1706170 grid. The errors associated with the use of the bounce-back boundary condition are calculated through a comparison

with the accurate solution with the consistent hydrodynamic boundary condition13±15

Figure 7. Relative errors in velocity and convergence rates of error as a function of grid resolution for ¯ow about circular
cylinders. The bounce-back boundary condition is applied at the cylinder boundary, with Re� 10 and t*� 0�75. The lattice
Boltzmann solution is compared with an accurate ®nite difference solution interpolated onto a lattice Boltzmann grid. Numbers

shown denote the slopes, showing the rate of convergence
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magnitude of the maximum relative error is near 20 per cent for the coarsest grid, although it drops as

the grid is re®ned, down to 4 per cent for the ®nest grid. The global errors in velocity and drag are

signi®cantly lower than the maximum relative velocity error, ranging from 0�3 per cent to 3 per cent

for the grid sizes employed in this study.

The rates of convergence for these errors are also depicted in Figure 7. The convergence

calculations do not include the values of error corresponding to the coarsest grid, since the error had

not yet reached the asymptotic limit. Although the bounce-back boundary condition is formally ®rst-

order, the computed rates of convergence of velocity error are clearly below 1�0. This shows that the

convergence of the simulation is reduced because the numerical grid does not conform to the curved

surface of the cylinder. The slope discontinuities on the lattice Boltzmann boundary contribute to the

relative error in a way which is sublinear with grid re®nement.

The relative errors in velocity at each grid location in the computational domain are illustrated in

Figure 8 for the 1706170 LBM simulation using the bounce-back boundary condition. The highest

errors occur at the boundary of the cylinder, with the point of maximum error near the location of

maximum viscous shear on the cylinder. This location also corresponds to an area where the square

lattice Boltzmann grid has the highest degree of mismatch with the boundary of the cylinder. A node

on this square grid has eight neighbours along horizontal, vertical and diagonal directions, so that

each node is linked to neighbouring nodes at 45� increments as shown in Figure 1. As a result, the

grid is particularly well suited for modelling surfaces whose tangents lie along these 45� directions.

Figure 8. Distribution of local error in dimensionless velocity for Re� 10, t*� 0�75 and 1706170 computational grid. The
bounce-back method is applied at the boundary of the circular cylinder. These velocities are compared with an 8168164 ®nite
difference computation interpolated onto the LBM grid. The dark contours denote 1 per cent increments of relative velocity

error
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For example, all the faces of the octagonal cylinder lie along these optimal tangent lines. The surface

of the circular cylinder features tangents with varying slopes. The eight locations on the circular

cylinder at 45� increments, measured radially from the centre of the obstacle and beginning with the

stagnation point, are also well modelled with the LBM grid. For the same reason, boundary locations

halfway between these optimal locations are not well suited for modelling with a square grid. The

maximum error in relative velocity occurs at such as point, where the tangent is halfway between 0�

and 45�; the error at this particular point is exacerbated by the high gradients in velocity and resulting

drag associated with the behaviour of ¯ow around a cylinder.

The total errors in total drag are represented by the coef®cient of drag, discussed in the preceding

paragraphs. An LBM simulation with the bounce-back boundary condition accurately predicts the

coef®cient of drag within 1 per cent for a 1706170 grid or ®ner, t* from 0�625 to 4�5 and Reynolds

numbers between 0�1 and 50. The shear component of the total drag is also calculated from a

1706170 LBM simulation for Re� 10 and t*� 0�75. This non-dimensional shear force per unit area

acting in the streamwise direction is found from20

ÿony

1
2

Re
; �20�

where the vorticity o is

o � @uy

@x
ÿ @ux

@y
: �21�

Here the y-component of the outward-facing normal is ny and the shear force is made non-

dimensional using the size of the obstacle and the average streamwise velocity.

Figure 9. Local shear on surface of circular cylinder as a function of azimuthal angle, with forward stagnation point at 0�. Shear
is calculated for Re� 10 with a 1706170 LBM simulation with t*� 0�75 and an 8168164 ®nite difference (FD) simulation.

The relative error in velocity at one node from the boundary is also shown as a function of angle
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The shear force is calculated at each node along the obstacle boundary as a function of azimuthal

angle and is shown in Figure 9. In order to compute shear for the LBM simulations, the vorticity is

calculated at each node from the velocity ®eld using second-order-accurate ®nite differences

according to (21). The vorticity is then interpolated onto the ®nite difference grid by Shepard's

method.18,19 The deviation between the ®nite difference and interpolated LBM solutions shows that

the LBM simulation fails to represent the local shear at each boundary node, although the shear is

considerably more accurate at boundary locations where the slope of the cylinder is approximated by

the LBM grid. The error in local relative velocity near the obstacle is also shown in Figure 9. This is

the error in velocity one node outside the obstacle as a function of angle. It is observed that the largest

deviation in shear force occurs when this local velocity error is greatest, not when the shear force is

maximum. Consequently, the LBM with the bounce-back boundary condition does not accurately

predict local shear owing to the stair-step nature of the boundary and the errors in local velocity near

the boundary. However, as shown in Figure 7, this method accurately predicts total drag, recovering

the global behaviour of the bulk of the ¯ow.

The errors in relative velocity and drag force are a much stronger function of grid size than

Reynolds number. The effects of Reynolds number on maximum relative error in velocity, velocity

error norm and error in coef®cient of drag are shown in Figure 10 for Re� 0�1 up to 100 and a

1706170 grid. The maximum error varies between 8 per cent and 11 per cent, increasing with

Reynolds number. Errors in velocity norm range from 0�8 per cent up to 2 per cent, with a minimum

near Re� 10. The errors in the drag coef®cient are smaller than the velocity errors, ranging between

0�4 per cent and 2 per cent.

Errors in velocity also vary with relaxation time as the solution deviates further from equilibrium.

Figure 11 depicts the effects of relaxation time on maximum velocity, velocity norm and drag

coef®cient. For relaxation times less than 1�5 the error remains relatively constant, except for the

Figure 10. Comparison of relative velocity error as a function of Reynolds number for t*� 0�75 and 1706170 grid. The
bounce-back boundary condition is imposed on the surface of the circular cylinder. The lattice Boltzmann solution is compared

with the accurate interpolated ®nite difference solution
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error in the drag coef®cient, which decreases. However, for greater values of relaxation time the error

begins to increase exponentially. For suf®ciently small values of t* the errors are not a strong

function of relaxation time. Beyond this region of short relaxation times the error is strongly

dependent on t*.

4. CONCLUSIONS

The bounce-back boundary condition is shown to be a reasonably accurate method for modelling the

boundary of octagonal and circular cylinders in lattice Boltzmann simulations of hydrodynamics for a

range of discretization parameters. With a 1706170 grid the lattice Boltzmann simulations

prescribed here are accurate for relaxation times less than 1�5 and Reynolds numbers between 0�1 and

100. The root mean square norm of the velocity error and the error in drag coef®cient are less than 1

per cent for the octagonal cylinder and 2 per cent for the circular cylinder.

The octagonal cylinder conforms well to this square grid and maximum relative velocity errors

occur in small, localized regions at the discontinuities, or corners, of the octagon. However, the

circular cylinders does not conform to the square LBM grid. The areas on the cylinder which least

conform to the square grid are the locations of maximum relative velocity error, which propagates

outwards into the ¯ow ®eld. Although the maximum errors in relative velocity are of the same

magnitude for octagonal and circular cylinders, the error norm and drag coef®cient error for the

circular cylinder are twice as large as those for the octagonal cylinder, since the errors associated with

the octagonal cylinders only exist near the boundary, while the errors of the circular cylinder affect

the entire ¯ow. The convergence rates of these errors are near ®rst-order for both the octagonal and

circular cylinders.

Figure 11. Relative velocity errors associated with bounce-back boundary condition for ¯ow around an array of circular
cylinders as a function of relaxation time. This 1706170 lattice Boltzmann grid is compared with the accurate ®nite difference

calculation at Re� 10
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Although the error inherent in the bounce-back method is higher than that associated with the

consistent hydrodynamic boundary condition and the rate of convergence is slower, the bounce-back

boundary condition provides a computationally ef®cient method for a curved surface.
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